
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 23, 897-92 1 (1 996) 

NUMERICAL SIMULATION OF UNSTEADY VISCOUS FLOWS 
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SUMMARY 
In this paper an implicit projection method for the solution of the two-dimensional, time-dependent, 
incompressible Navier-Stokes equations is presented. The basic principle of this method is that the evaluation of 
the time evolution is split into intermediate steps. The computational method is based on the approximate 
factorization technique. The coupled approach is used to link the equations of motion and the turbulence model 
equations. The standard k - t  turbulence model is used. The current methodology, which has been tested 
extensively for steady problems, is now applied for the numerical simulation of unsteady flows. Several cases 
were tested, such as plane or axisymmetric channels, a backward-facing step, a square cavity and an 
axisymmetric stenosis. 
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factorization technique 

1. INTRODUCTION 

The numerical prediction of unsteady incompressible flow fields has always been one of the most 
challenging areas of fluid dynamics. The primary difficulty is in finding a satisfactory way to link 
changes in the velocity fields to changes in the pressure field. This interaction must be accomplished 
in such a manner as to ensure that the divergence of the velocity vanishes at each level of physical 
time. The most common solution to this problem is the use of an artificial compressibility 
methodology or a projection methodology. 

The projection method for the solution of the time-dependent NavierStokes equations was 
introduced independently by Chorin’ and Temam.’ Subsequently an explicit version of the method 
was presented by Fortin et al.3 The projection method is an interpretation of a fractional step method 
as adapted to the unsteady NavierStokes  equation^.^ The procedure of the physical time level 
increment is split into two steps. Following the decomposition of Chorin,’ a tentative velocity field is 
fist calculated by the discretized momentum equations without the pressure gradient. At the second 
step the velocity components at the new time level are evaluated by correcting the tentative solution 
in order to satisfy the incompressibility constraint. 

The solution algorithm we use in the present study is the approximate factorization technique. This 
is an implicit algorithm which was initially developed by Beam and Warming’ for compressible 
flows but has been successfully used for incompressible steady flows as well.6v7 Regarding the 
mathematical model, a projection method is developed which uses a Poisson equation for the explicit 
pressure derivation, while the numerical algorithm involves only the momentum equations. 
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The standard k - t model with the wall functions equations was selected for the simulation of 
turbulence flows because it is well-tested and widely used. It is expected that this turbulence model 
will sometimes perform poorly, especially in recirculation zones. 

The objective of this paper is to describe a new projection method developed for collocated grids 
and to present predictions for several test cases where the unsteadiness is either forced or coherent. 

2. GOVERNING EQUATIONS 

2. I .  Momentum equations 

The full form of the momentum equations is used, where all variables are in non-dimensional form. 
The reference quantities are some reference velocity uEf, a reference length LEf, a reference density 
pEf and a reference kinematic viscosity vKf. The reference value for the time is then defined as 
tEf = LEf/uEf and for the pressure is the product pEf = pKfu:f. The subscripts x, y,  ( and q denote 
derivation. The momentum equations are 

Y 

Y 

where a = 0 for the two-dimensional equations, a = 1 for the axisymmetric equations, 
Re = uEfLKf/vEf is the Reynolds number and k is the kinetic energy, which is taken into account 
only if a turbulent flow is going to be simulated. Finally the stresses are 

where veff is the effective viscosity. 

2.2. Turbulence model equations 

Turbulent flows have been successfully computed over a wide range of flow regimes with 
Reynolds-averaged NavierStokes equations using the high-Reynolds-number form' of the k - 6 

model. This formulation requires the use of wall functions to bridge the viscous and boundary layers 
in proximity to the solid wall. This approach is strictly valid only for attached shear layers and may 
perform poorly in recirculation zones. Experimental observations showed that the general behaviour 
of the boundary layer and the structure of the turbulence are not fundamentally affected by the 
unsteadiness of the flow."' From these observations it is well-founded to suppose that turbulence 
models that are used to predict steady flows are still valid for unsteady flows as well. 

The non-dimensional equations of the standard k - L model are the kinetic energy (k) equation 

and the dissipation rate ( 6 )  equation 

€ -  
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where the reference quantity for the kinetic energy is ukf and for the dissipation uif/LRf. In (3) and 
(4), z; is the kinetic energy production term, 

and 

where veff and v1 are the effective and the kinematic viscosity respectively and v, is the turbulent 
viscosity, which is given by the relation 

k2 
vt = ReC, - . 

€ 

Finally the constants are 

c, = 1-44, c2 = 1.92, c, = 0.09, bk = 1.0, cc = 1.3. 

For the above model the concept of wall hc t ions  has been employed.8 According to this, the 

Up = u*y+ for y+ < 11 -63, 

parallel-to-the-wall velocity Up at the first grid point P from the wall is 

laminar sublayer : 

u* turbulent sublayer : Up = - ln(Ey+) for y+ > 1 1.63, 
Ic 

where 

y+ = Y u* 
V 

is the dimensionless distance of the point P from the wall, 

is the friction velocity, z, is the wall shear stress, y is the normal distance from the point P to the wall, 
K = 0.4187 is the von Karman constant and E = 9-793 is a roughness parameter. 

From the above relations and according to the position of the fist point P (laminar or turbulent 
sublayer), it is possible to calculate the shear stress 7,. 

Finally, supposing that the shear stress is constant in the sublayer, the kinetic energy kp and 
dissipation cp at the point P are found to be8 

2.3. Transformed form of equations 

Using the system of equations (1H4) and performing a generalized co-ordinate transformation from 
the physical (x ,y ,  t )  to the computational (l,  q,  t) domain, the following non-dimensional form of the 
equations is obtained:I2 

a,Q" + a ,F  + a,Gn + aE" + K" = a,v" + a,wn + aC" + D", (6) 
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where the superscript n denotes the time instant. In (6),  Q is the vector of conservative variables, 

Q = J-'[u,  v, k,  €IT, 
F, G and E are the convective fluxes, 

F = J-'[uU + 3 <,k, vU + f (,k, kU, E U ] ~ ,  

v2 
z,, z, - q6, r,k,  + 2v , - ,  r6cy + 2v,C, 

Y 

D is a vector that contains terms of the k - 6 equations, 

€ 
0, 0, vtG' - Re€, vtCl - G' - ReC2 

k 

and finally 

is a matrix that contains the pressure derivatives of the momentum equations. 

which now takes the form 
As can be seen, the vector D contains in addition the axisymmetric terms of the production term 2, 

G' = mxq + tlxuJ2 + 2(4,;"c + Ylp?J2 + 15,vr + tlxv, + C;pYut; + qyuJ2. 

In the expressions above, 4 and q are the curvilinear co-ordinates connected to the Cartesian ones x 
and y through the generalized coordinates transformation 

4 = k y ,  0, q = q(x, y ,  0,  z = t  

and J = tXqy  - 4,qX is the Jacobian of the transformation. Finally, U and V are the contravariant 
velocities along the directions 5 and q respectively, given by the relations 

u = 4 ,  + 4,u + 4 p ,  v = q, + q,u + q,v. 

3. NUMERICAL ALGORITHM AND METHOD OF APPLICATION 

3. I .  Time-marching scheme 

For the solution of the system of equations (6)  the implicit, factored, finite difference scheme of 
Beam and Warming' is used. The temporal derivative in ( 6 )  is approximated via a generalized time 
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differencing: 

1 (1 +[)A-[V Q" = - Q" + O[(e - - [)AT +  AT^] ' AT 1 + B A  
AQn 8 1 - 8  (7) 

&Q +-aTQ" +-- ' ''"-I + O[(e - 4 - ~)AT + AT~], -- -- 
AT I + [  1 + r  I + [  AT 

where AQ" = Qn+l - Q" and A and V are the forward and backward differencing operators 
respectively. According to the choice of values of 8 and [ in (7), a fust- or second-order time-accurate 
scheme can be derived. 

After substituting (6) into (7) and preforming calculations, the following relation is derived: 

1 - 8  + -(a,V + a,W + aC + D - ayF - a,G - aE)" 
1 + r  

Using a fractional step method similar to that described by Anderson and Kristoffer~en,'~ the 
above relation is split into two parts 

e 
(a,V + a,W + aC + D - a,F - a , ~  - aE)* Q* - Q" 

A T  - I + [  
1 - 6  
1 + r  + --((a,V + a,W + aC + D - agF - a,G - aE)" 

+ O[(e - 4 - [)AT + At2] 
r AQ"-' +-- 

l + [  AT 

and 

where Q* = [u*, v*, k*, c*IT is a tentative flow field and K"+' = K*. Equation (8) is actually the 
same as (7), except that it contains equation (6) without the pressure gradients and now 
AQ" = Q* - Q". Using equation (6) and performing some simple calculations, the last of the above 
relations becomes 

e -- 1 - 8  e 
K" + - arQn+l +C&Q* * Q"+l - * e Q = - - ~ n + l - -  

A T  1 + r  l+C  l+C 

AT i + w  l + i - e  
K" . -Q*--  - e Knfl - -' Qn+l 

(9) 
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In order to satisfy the constraint 1 + c - 8 # 0, we use the implicit, second-order time-accurate, 
three-point backward scheme' with 8 = 1 and c = 0-5. 

A non-linear expression occurs for the time increment of the vector of conservative variables 
A4".127'4. In order to derive a linear algebraic system of equations, a linearization of the viscous and 
inviscid fluxes must be performed. The inviscid fluxes, which are functions of Q, are linearized using 
a Taylor series expansion: 

AF' = A"AQ" + O(A?), AG" = B"AQ" + O(At2), 

where A" = aF"/aQ" and B" = aC"li3Q" are the Jacobian matrices of the vectors F" and G" 
respectively, given by 

O I  
2 I a, + 2axu + ayv aY 5UX 

0 2 
@XU a, + axu + 2ayv 5 

kaX kaY a, + axu + a,# 0 
A",B" = 

where a = 5 for A" and a = q for B". 
The above linearization of the inviscid fluxes ensures the second-order time accuracy of the 

scheme. In order that this accuracy is retained in the corresponding linearization of the viscous fluxes, 
it must be taken into account that the latter are all functions of Q, Qc and Q,. Then the viscous fluxes 
V", W" and C" are first split into two parts, one of which is a function of Q and Qc and the other a 
function of Q and Q,: 

where 

The vectors Vy and W; are linearized implicitly using a Taylor series expansion: 
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T" = - 

903 

H" = 
1 0  2v 0 0 
Y O  k u 0 '  

The Jacobian matrices are 

(-P + R r ) R , ( - y +  S,)" 

J 
Re 

- _  - 

where a = 5 for R" and (-P + Rr)" and a = q for S" and (-Y + SJ". 

matrices NT = K;/aQ", NI = X;/aQ' and N; = aC;/aQ" are 
The fluxes C;, Cl and C; are linearized in the same way as the inviscid fluxes and the Jacobian 

2 
N; =3 

0 0  0 0 

0 0 "en 0 -- 
Re 

0 0 2c$; k -c+ k2 
€2 

0 0 c,c,vz 0 

where a = ( for N; and a = q for N:. 

and H" = aD"/EQfl are 
The same linearization is used for the fluxes E" and D" and the Jacobian matrices T" = aE"/EQ" 

I v  u 0 01 

l o  € 0 v l  

10 0 0 0 

0 0  0 
k2 
€2 

-C -G' - 1 k 
0 0 2C,,-G' 

€ 

€2 € 
0 0 C,C,G'+C2-5 k -2c2- k 

where the production term G' is considered to be constant. 
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The substitution of the linear expressions of the flux vectors into the oAginal non-linear equation 
for AQ" leads to a strongly coupled system of equations in both spatial directions. This coupled 
system is solved by the approximate factorization te~hnique,','~ which leads to the following two 
tridiagonal systems, one for each of the two directions 5 and q: 

(I + 5 [ar(* - P + Rr) - atrR - aN, + @,HI" .A@ = RHS, ) ( 104 

(lob) - Y + Ss) - a,,S - u(N2 + N, - T) + @bH]")*AQ" = A@, 

where 

Q* = Q" + AQ" + Q* = @ + J A Q ~ ,  

A7 BAT 
1 + c  1 + r  

RHS =- [at(-F + V)" + a,(-G + W)" + a(C - E)" + D"] + -(atAV!-' + a,AW;-') 

r 
l + c  

+ -AQ"-' + D, + 0 [ ( 8  - - ()A72 + A.r2], 

(1 1) 
Q = J Q  is the vector of conservative variables in the physical domain, D, represents the artificial 
dissipation terms14 and 0, and @b are weighting functions" used to add the Jacobian matrix H in the 
two sweeps: 

3.2. Poisson equation 

Equation (9) leads to the relations 

p+l =k* p+l - - E* 

Assuming that the continuity equation is satisfied at the time instant n + 1, 
aufl+l &p+l #+I -+- +a--0, 

ax ?Y Y 
the first two equations (12) are combined to give the Poisson equation (with P = p/p )  

# P + I  1 ap.+I 1 + ( - e  
8A.r 

+- +a--- 
ax2 ?Y2 Y ?Y 

1-8  
div(grad P)"" = i- - 'div c* - - div(grad P)", 8A.r 8 

where c* = (u*, v*) is the tentative velocity vector. 
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The procedure used is the following. First the time-marching scheme of (10) and (1 1) is solved to 
provide the tentative velocity components u* and v* and the turbulent variables k and L. Next the 
Poisson equation is solved using the classical AD1 method, which converges fast, and the pressure 
field is obtained. Finally the velocity components at the new time level are evaluated by correcting 
the tentative velocity field using (12). For unsteady flows it is essential to fully converge the Poisson 
equation at each time step in order for the mass conservation to be satisfied. 

3.3. Artificial dissipation terms 

The spatial derivatives in the above system of equations are approximated by three-point, central 
second-order differencing expressions. Thus the solution of the system of equations (10) requires the 
inversion of two block tridiagonal systems, one in each direction. On the other hand, the use of 
central differences leads to the necessity of adding external artificial dissipation terms so that the 
stability is retained and high-frequency oscillations from the solution are removed. In the present 
work, only explicitly terms D, are used in (1 1). These terms are a blended second- and fourth-order 
non-linear model which is widely used in compressible and was used for the first time in 
incompressible flows by Pentaris et a1.14 

3.4. Dejnition of time step 

Although the solution method is implicit, the actual stability of the scheme is not independent of 
the time step used. In this work, small time steps are used which help the fast convergence of the 
Poisson equation, although the implicit scheme allows much larger time steps to be used. When a 
problem with oscillating flow rate is to be simulated, the NavierStokes equations must be integrated 
for as many cycles as are needed to reach a periodic steady state, if such a state exists. In the periodic 
steady state of period T the solutions at time instants t and t + T must reach a specified convergence 
criterion, which in the present work is 1 x lop5. With the present method this criterion is reached at 
the second period, because 10,000 time intervals are used per period. Using fewer time intervals per 
period, more iterations are needed for the convergence of the Poisson equation. In addition, more 
periods are necessary to reach the above criterion and thus the total computational cost is increased. 

When a problem with steady upstream conditions is solved, where the Poisson equation is rapidly 
converged, the time step must be as large as possible. Then the time step is defined as 

CFL dt = 
1 + JJmax ' 

where J,, is the maximum of all the Jacobians in the computational domain and CFL is the Courant 
number. 

4. BOUNDARY CONDITIONS 

Throughout the computations, explicit boundary conditions are used. The Poisson equation is solved 
under the following pressure boundary conditions. Integrating (1 3) in the calculation domain E, we 
get 
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then, using the Gauss theorem, we obtain 

where n denotes the normal vector to the border A of the domain E. Equation (1 4) must be used in 
combination with the Neumann boundary conditions for the pressure. These conditions are applied at 
each iteration of the AD1 method, while the tentative velocity field remains constant in the entire 
domain. Failure to satisfy (14) results in non-convergent iterative solutions for (131, because a 
solution does not exist.20 The compatibility condition (14) is automatically satisfied on staggered 
grids. Solving the Poisson equations in a full conservative f01-m'~ and using the above-mentioned 
boundary conditions, full convergence of ( 1  3) is obtained although collocated gnds are used. 

Concerning the other variables, the velocity profiles are specified on the inlet boundary, while the 
kinetic energy kin is taken to be 0.3% of the turbulence intensity (if experimental data are not 
available) and the dissipation tin is derived from the relation of the mixing length: 

C,,kii2 
kin = 0.003~;, €1" = ~ 0*005Din ' 

where Din is the inlet span. 
On the outlet boundary all variables are calculated by extrapolation from the interior. On the 

symmetry axis the first derivatives of all variables are set equal to zero, except for the v-component of 
the velocity which itself is set equal to zero. On the solid surface the no-slip condition is applied for 
the velocity components. The kinetic energy and the dissipation are defined at the first grid point 
above the solid surface with the use of the wall hc t ions  (5).  

Finally, as initial conditions, the u-velocity component is set equal to unity, while the v-velocity 
component and the pressure vanish. The initial data for the turbulence model variables are given by 
(1 5). It must be mentioned that the solution is independent of the initial conditions used. 

5 .  RESULTS AND VALIDATION 

Some representative results of several test cases are shown in this section. It must be mentioned that 
all the quantities used are dimensionless. The dimensionless Strouhal and Womersley numbers are 
defined respectively as 

where oXf is the reference cyclic frequency. The relation between the physical time t(s) and the 
dimensionless time t is (note that t = z) 

Finally it must be noted that all the results have been tested for various grids and are independent of 
the grid density. 
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5.1. One-dimensional oscillatory channel flow 

dimensional flows and tested on an oscillatory channel 
the channel is oscillating according to 

In order to check the reliability of the present method, it was initially developed for one- 
In this problem the back pressure of 

pe,(t) = p, + pe sin(Str t). 

An analytic solution to this problem can only be obtained if the pressure perturbation p,  is small 
compared with the mean back pressurep,. In this work these parameters arep, = 0.1 andp, = 1. The 
analytic dimensionless solution for the velocity is 

u(t) = 1 - ___ Pe [sin(Str t )  - st r  cos(str t) - str e-'] 
1 +str* 

and for the pressure 

P str 
1 + Str2 p(x, t) = po +pe sin(Str t) + (x - 1) [cos(Str t) + Str sin(Str t) + e-'1, 

where Str = W , ~ I / U ,  is the Strouhal number, chosen to be 10 in this case, based on the mean velocity 
u, and the tube length 1. 

The above solutions show that the velocity is a function of time only. This is a direct reflection of 
the incompressible continuity equation in a constant area tube. The pressure fluctuation is a linear 
function of x that vanishes at x = 1 to meet the downstream boundary condition. Some comparisons 
between the numerical results and the analytic solution are shown in Figure 1. The calculated 
dimensionless velocity as a function of time (left) and the dimensionless pressure at three longitudinal 
positions of the tube (right) are compared with the analytic solution. Both numerical results are in 
excellent agreement with the analytic solution, demonstrating the reliability of the present method for 
unsteady flows. 

5.2. Two-dimensional periodic $ow between parallel plates 

The oscillatory flow between two parallel plates with a span of 26 is the second test case we 
present. The Reynolds number is based on the half-distance b between the two plates and the 

*ao*o Anolytic s.olut)on 
Current method - 

1.08 101 

1 04 
I .. 

f l  oc dl .m > '.. 
(10.96 

0 99 

0.92 

Figure 1. Time evolution of velocity (left) and pressure (right) in one-dimensional channel flow 
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maximum inflow velocity u,,. Imposing at x = 0 the inflow uniform velocity given by 
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uin(t) = sin(& t) ,  v(t) = 0, 

the analytic solution given by Moore” for the developed part of the channel leads to the velocity 

1 00 - 

080 - 

0 6 0  - 
n 

040 - 
\ x f  

and the pressure gradient 

Str 
- ( f )  Q = - sin(Str t - $2). 
dx 4v: + GI 
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Figure 2. Velocity profiles in developed region of two-dimensional channel for W = 1 
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Figure 3. Velocity profiles in developed region of two-dimensional channel for W = 4 
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Figure 4. Time evolution of velocity at several positions in developed region of channel for W = 1 (left) and W = 4 (right) 
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50- 

x -  

-2 ' D .  D .  25 O: - 

-25- 

- 

In the above relations, 

20- 

D 73 Wi 
-10- 

I -20- . . . . . . . . .  . , . , , . , . , , . . . , , , , , ~  

cosh(A) cos(A) sinh(B) sin(B) - sinh(A) sin(A) cosh(B) cos(B) 
cosh2(B) cos2(B) + sin2@) sinh2(B) 

Ti = 

cosh(A) cos(A) cosh(B) cos(B) + sinh(A) sin(A) sinh(B) sin(B) 
cosh2(B) cos2(B) + sin2@) sinh2(B) 

sinh(B) cosh(B) - sin@) cos(B) 
2B cosh2(B) cos2(B) + sin2@) sinh2(B) ' 

T2 = -1 + 
1 I 

1, ='I T,dy=- 
2 - 1  

0.00 0.40 

1 1 sinh(B) cosh(B) + sin@) cos(B) 
Z 2 = ' /  T2dy=-1+- 

2 -1  2Bcosh2(B) cos2(B) + sin2@) sinh2(B) ' 

where 

y = 0 at the midpoint between the two plates, Str = bo/uo = 10 in this case and W is the Womersley 
number. Two values of this number, W = 1 and 4, are used in this paper, with the Reynolds number 
taking the values 0.1 and 1-6 respectively. 

A 75 x 29 grid is used for the current test case, with length 4b and height b. The lower boundary 
0, = 0) is a solid wall and the upper one 0, = 1) is a symmetry axis. 

One cycle of the inflow velocity oscillation is split into 10,OOO time intervals and the time step 
obtained is 

2n 
str x 10000 

dt= = 2x x lo-? 

In Figures 2 and 3 the developed velocity profiles for W = 1 and 4 respectively at different physical 
time instants are presented. As can be seen, the numerical results coincide with the analytic solution. 
It can be observed that for the smaller Womersley number the profiles keep the form of a developed 
flow. In Figure 4 the velocity as a function of time is presented at three different distances from the 
wall. The agreement is excellent between the numerical results and the analytic solution. It can be 
seen that for W = 1 the maximum velocities in each perpendicular position are in phase, which does 

Figure 5. Time evolution of pressure gradient in developed region of channel for W = 1 (left) and W = 4 (right) 
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not occur for W = 4. In addition, it is clear that the unsteady motion is predicted well after one-fourth 
of the first period, which is one reason for the use of small time steps. The same conclusions are 
derived from Figure 5, where the pressure gradients in the developed part as a function of time are 
presented for both Womersley numbers. 

5.3. Axisymmetry periodic channel flow 

The third test case under consideration is the periodic flow in a circular tube, extensively presented 
and analysed by many researchers.2s26 In the present paper the Reynolds number, based on the 
radius a of the tube and the maximum inflow velocity uo, is considered to be equal to 0-1 in order to 
approximate the Stokes Aow. At x = 0 the imposed velocity profile is26 

u(t) = u(y) cos(Str t ) ,  v(t) = 0. 
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Figure 6. Longitudinal velocity component along circular tube for one cycle of flow 
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Since many problems of practical interest deal with entrance flow difficulties, in the present study we 
set 

- (0.05 - ~ ) ~ / 0 . 0 5 *  when 0 < y < 0.05, 
when 0.05 < y 6 1, 

so that the axial velocity at the entrance of the tube is uniform except near the wall 0 = 0), where it 
parabolically approaches zero in a small layer region. 

For the present case we select the typical Womersley number W = cL,/(wEf/vEf) = J30 and the 
Strouhal number becomes Str = awref/uref = 300. The time step used is dt = 2.094 x 

A 45 x 40 grid is used, with length 1 . 2 ~  and height a. The lower boundary (y = 0) is a solid wall 
and the upper one 0, = 1) is a symmetry axis. 

OOOOO Analytic Solution 
~ Current method 

wt=o , y /0=0 .025  
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Figure 7. Radial velocity component along circular tube for one cycle of flow 
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Figure S(a). Streamline contours for one complete cycle inside cavity 
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Figure 8(b). Streamline contours for one complete cycle inside cavity 
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The solutions for the velocity components and the excess extrance pressure are expressed in the 
form 

where A,, A, and A, represent amplitudes and O,, 8, and 8, phases of the solutions. Note that each of 
the above amplitudes and phases of the solution is dependent upon both the co-ordinates x and y. 
Solutions for the above relations are given by Goldberg et dZ6 in their Table I (note that their product 
W T is equivalent to our Str t). 

In Figures 6 and 7, comparisons between the semianalytic solution26 and the numerical results 
provided by the current method are given for the two velocity components at four instants of physical 
time. The axial velocity component u is presented along the centreline 0, = 1) and near the wall 

= 0.025), as a function of the distance from the entrance. The radial velocity component v is 
shown at y = 0.025. The agreement of the numerical results with the semianalytic solution is very 
good at all time instants. Discrepancies that occur in the centreline velocity at ot = 0 and at = IC at 
x = 0 are due to the semianalytic solution.26 

- 
080 1 3 0  

-0 10 

O ' O d  6o 

o m  020 

Figure 9. Pulse velocity as a function of time 
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Figure 10. Geometry of stenosis and 419 x 41 grid 
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oT=O 

wT=0.2n 

0T=06n 

OT=X 

oT=12n 

oT= 1 . 4 ~  

Figure 11. Streamline contours for one complete cycle of flow in stenosis 
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5.4. Oscillatory $ow inside a square cavity 

The fourth computational test we present is a flow in a driven cavity with a time-periodic lid 
velocity. The Reynolds number, based upon the maximum lid velocity u, and the length of the cavity 
side, is equal to 400. The oscillating lid velocity is given as27 

u(t) = cos(Str t), v(t) = 0.  
The Strouhal number is equal to unity and the time step obtained is dt = 2n x lo4. A uniform 

80 x 80 grid is used. 
In Figures 8(a) and 8(b) the streamline contours for the periodic steady solution are presented. 

Each plot corresponds, in order to the sequence of physical time wt = 2ny/40, where y = 8, 12, 14, 
16, 18, 20, 28, 32, 34, 36, 38 and 40. These time instants are used in order for our results to be 
comparable with the numerical results provided by Soh and G o o d n ~ h ~ ~  (their Figure 9). A symmetry 
consideration leads us to expect that flows at time instants t and t + T / 2  are mirror images of each 
other about x = 0.5 and the streamline contours clearly indicate the symmetry between Figures 8(a) 
and 8(b). 

5.5. Pulsatile $ow through an axisymmetric stenosis 

The unsteady flow through an axisymmetric stenosis is the next case we present. This kind of flow 
is of great interest because of its relation to the human vessels and the possibility of diagnosing the 
stenosis in its earlier stages. In this work we deal with the physiological pulsatile flow. The stenosis is 
considered as a single smooth constriction in a long straight circular tube and its geometry is given 
asz8 

y(x) = 1 - 0.5 exp(-42), 

where x and y are normalized by the unconstricted tube radius R.  The degree of the stenosis is 70%. 
The Reynolds number, based upon the radius R = 0.005 m and twice the peak spatial average 

velocity u,, = 0.1348 m s-' at the inlet section, is Re = 2uwR/v,, = 337. The Womersley 
number used is 6.27. The time step used is dt = 0.0054. At the entrance a time-dependent parabolic 
velocity profile is imposed,29 

where uo(t) is the pulse velocity in metres per second, shown in Figure 9. 

0.00 10.00 20.00 30.00 40.00 50.00 
x/H 

Figure 12. Geometry of step and 250 x 50 grid 
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For the present test case a 419 x 41 grid is used as shown in Figure 10. The lower boundary 
0, = 0) is a solid wall and the upper one 0, = 1) is a symmetry axis. 

The instantaneous streamlines during one cycle of physiological pulsatile flow are shown in Figure 
11. Our results are at the same physical time instants as the numerical results presented by Tu et aLZ9 
(their Figure 9). The comparison between the two numerical methods shows very good agreement. At 
WT = 0.211 the streamline runs smoothly through the stenosis and a small vortex develops. As the 
flow accelerates during systale, the vortex becomes bigger and it continues to grow even after the 
flow decelerates after oT = 0.671. At WT = a the flow reverses direction near the wall, upstream of 
the stenosis, and another vortex develops in this region. When the flow at the entrance section starts 
to reverse direction at about wT = 1.2q both vortices grow in size, detach from the stenosis and fill 
most of the circular tube. The influence of the reversed flow downstream of the stenosis can be seen 
here. The vortex is forced towards the axis by this reversed flow near the wall. At oT = 1 -6n the flow 
reverses direction for a second time and accelerates during diastole, the upstream vortex is diffused 
and the downstream vortex is carried out by the flow?* At oT = 1.811, when the flow decelerates, a 
small vortex develops again and it becomes bigger at oT = 0. After that time the flow smooths out 
and the cycle starts again with the systole. 

5.6. Unsteady Jrow behind a backward-facing step 

For many years, turbulence in fluids has been the subject of uninterrupted efforts aimed at 
unveiling the mystery of its dynamics. An important idea which has recently emerged is the concept 
of coherent vortices, corresponding to local vorticity concentration of lifetime much longer than its 
turnover time. These coherent vortices play an important role in numerous technological applications 
and its is necessary to understand the dynamics of these organized motions so as to mechanically 
control their production or suppression. In high-Reynolds-number mixing layers, Kelvin-Helmholtz 
coherent vortices were identified by Brown and R0shk0.~~ Recent numerical studies deal with 
separated flows in various geometries. In the present paper a numerical investigation of the coherent 
vortices in turbulence behind a backward-facing3' step is presented. 

Figure 13. Pressure contours for unsteady flow in backward-facing step 

Figure 14. Vorticity contours for unsteady flow in backward-facing step 
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O 1 (x,y)'(7.59,0.1) *O 1 (x.y)=(16.8.2 35) 
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Figure 15. Time evolution of longitudinal velocity at x / H  = 7.59, y / H  = 0.1 (left) and x / H  = 164,y/H = 2.35 (right) for 
unsteady flow in backward-facing step 

The ratio of the channel height W to the step height His W/H = 2.5.  The geometry and the inflow 
velocity profile V(y) are the same as in the experiments of Eaton and Johnston.32 Two grids of 
dimensions 150 x 40 and 250 x 50 were used. The denser one is shown in Figure 12. The total 
length of the channel is 50 step heights. Both the lower and upper boundaries are solid surfaces. The 
Reynolds number, based upon the step height Hand the maximum inflow velocity U,, is 38,000. The 
time step used is d# = 0.0075. 

In the fist run the original k - 6  model was used. The flow that occurred was steady and the 
recirculation length was 7 -  1 H. The main reason that a steady flow was predicted is the overestimate 
of the turbulent kinematic viscosity, which indirectly reduces the Reynolds number. Thus a second 
run was performed using the relation 

proposed by Miner et a1.,33 wheref, = 0.04, y,' = 8 and A+ = 26. The above relation is used in order 
to reduce the turbulence viscosity in the near-wall region (y+ < 120), where& -= 1. 

The flow now becomes unsteady. The pressure contours are shown in Figure 13 and the vorticity 
contours in Figure 14. The presence of a mixing layer behind the step is shown. The recirculation 
length is overestimated as 8.1H, compared with the experimental result of 7.8H (temporal mean) and 
the other numerical result of Silveira Net0 et of 6.8H. The eddies which impinge on the lower 
wall and are transported downstream are shed with a frequency f that corresponds to a Strouhal 
number Str = f H / U ,  % 0.068 for the denser grid and 0.072 for the coarse one. This is in good 
agreement with the experimental value, Str w 0.07. In Figure 15 the temporal evolution of the 
longitudinal velocity component at x / H  = 7.59, y /H = 0.1 and x / H  = 16.8, y /H = 2.35 is shown. 
In Figure 16 the time-mean velocity profiles at two different positions are shown in comparison with 
the experimental data of Eaton and Johnson32 and the numerical results of Silveira Net0 et aL3' The 
agreement with the experimental data is very good. These profiles were integrated in about 42,000 
time steps and were almost identical for both grids used. 
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Figure 16. Longitudinal velocity profiles versus experimental data and other numerical results 

An interesting phenomenon is the separation of the boundary layer from the upper wall; it 
generates a second street of coherent vortices which are transported towards the outlet of the channel 
with a Strouhal number Str % 0.068. This phenomenon has also been observed in experiments 
performed by Armaly et ~ 2 1 . ~ ~  

6 .  CONCLUSIONS 

An implicit projection method for the solution of the unsteady Navier-Stokes equations on collocated 
grids is presented in this paper. The computational method is based on the approximate factorization 
technique and the incompressibility constraint is satisfied by a Poisson equation. Extended 
comparison with analytic solutions, experimental data and numerical results provided by other 
researchers lead to the conclusion that the present methodology is a reliable tool for solving a large 
range of unsteady problems. 
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